如图,已知点D为等腰直角△ABC内一点,∠CAD=∠CBD=15°.(1)求证:AD=BD;(2)E为AD延长线上的一点,

2020-05-04 教育 66阅读


(1)证明:∵AC=BC,∠ACB=90°,
∴∠CAB=∠ABC=45°.
∵∠CAD=∠CBD=15°,
∴∠BAD=∠ABD=30°.
∴AD=BD.

(2)证明:在DE上截取DM=DC,连接CM,
∵AD=BD,AC=BC,DC=DC,
∴△ACD≌△BCD.
∴∠ACD=∠BCD=45°.
∵∠CAD=15°,
∴∠EDC=60°.
∵DM=DC,
∴△CMD是等边三角形.
∴∠CDA=∠CME=120°.
∵CE=CA,
∴∠E=∠CAD.
∴△CAD≌△CEM.
∴ME=AD.
∴DA+DC=ME+MD=DE.
即AD+CD=DE.



(3)延长CD交AB于点H,则CH⊥AB,
∵∠HBD=30°,BD=2,
∴BH=BD?cos30°=
声明:你问我答网所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系fangmu6661024@163.com