解题过程如下:
V=∫π(rsinθ)^2*rdθ
=π*∫r^3*(sinθ)^2dθ
=πa^3*∫(1+cosθ)^3*(sinθ)^2dθ
=64πa^3*∫(cost)^8*(sint)^2dt
=64πa^3*[∫(cost)^8dt-∫(cost)^10dt]
=32π^2*a^3*7/256
=7π^2*a^3/8
扩展资料
性质:
在平面上取定一点O,称为极点。从O出发引一条射线Ox,称为极轴。再取定一个单位长度,通常规定角度取逆时针方向为正。
平面上任一点P的位置就可以用线段OP的长度ρ以及从Ox到OP的角度θ来确定,有序数对(ρ,θ)就称为P点的极坐标,记为P(ρ,θ);ρ称为P点的极径,θ称为P点的极角。
在平面上,取一点O称为极点,从O出发的一射线OX称为‘极轴’。平面上任意一点P的位置,就可以用线段OP的长度γ和OP与OX所夹的角θ来确定。(γ、θ)称为点P的极坐标。
极坐标方程经常会表现出不同的对称形式,如果ρ(−θ)= ρ(θ),则曲线关于极点(0°/180°)对称,如果ρ(π-θ)= ρ(θ),则曲线关于极点(90°/270°)对称,如果ρ(θ−α)= ρ(θ),则曲线相当于从极点逆时针方向旋转α°。