求特征值时的矩阵因为都含有λ,不太可能化为下三角矩阵。
因为如果用化三角形的方法来解决的话,就涉及到给某行减去一下一行的(4-λ)分之几的倍数,此时你不知道λ是否=4。
所以这种变换是不对的,一般都是把某一列或者行划掉2项,剩下一项不为0的且含λ的项,将行列式按列或者按行展开。
扩展资料:
实对称矩阵的行列式计算方法:
1、降阶法
根据行列式的特点,利用行列式性质把某行(列)化成只含一个非零元素,然后按该行(列)展开。展开一次,行列式降低一阶,对于阶数不高的数字行列式本法有效。
2、利用范德蒙行列式
根据行列式的特点,适当变形(利用行列式的性质——如:提取公因式;互换两行(列);一行乘以适当的数加到另一行(列)去,把所求行列式化成已知的或简单的形式。其中范德蒙行列式就是一种。这种变形法是计算行列式最常用的方法。
3、综合法
计算行列式的方法很多,也比较灵活,总的原则是:充分利用所求行列式的特点,运用行列式性质及常用的方法,有时综合运用以上方法可以更简便的求出行列式的值;有时也可用多种方法求出行列式的值。
参考资料来源:百度百科-行列式