用数学归纳法证明高阶导莱布尼茨公式方式方式如下图
数学归纳法是一种数学证明方法,通常被用于证明某个给定命题在整个(或者局部)自然数范围内成立。除了自然数以外,广义上的数学归纳法也可以用于证明一般良基结构,例如:集合论中的树。这种广义的数学归纳法应用于数学逻辑和计算机科学领域,称作结构归纳法。
在数论中,数学归纳法是以一种不同的方式来证明任意一个给定的情形都是正确的(第一个,第二个,第三个,一直下去概不例外)的数学定理。
扩展资料:
数学归纳法证明解题要点
数学归纳法对解题的形式要求严格,数学归纳法解题过程中,第一步验证n取第一个自然数时成立,之后假设n=k时成立,然后以验证的条件和假设的条件作为论证的依据进行推导,在接下来的推导过程中不能直接将n=k+1代入假设的原式中去。最后总结表述。
参考资料:百度百科-数学归纳法