给一个可导,但导函数不连续的例子!

2022-04-17 文化 301阅读

函数为g(x)=x2sin1x,x≠0g(x)=x2sin⁡1x,x≠0

在[0,1][0,1]上定义函数g(x)=x2sin1x,x≠0g(x)=x2sin⁡1x,x≠0

补充定义g(0)=0g(0)=0,则函数g(x)g(x)为连续函数,图形如下。

导函数可求得g′(x)=2xsin1x−cos1x,x≠0g′(x)=2xsin⁡1x−cos⁡1x,x≠0

并且g′(0)=0g′(0)=0,所以g′(x)g′(x)在x=0x=0处并不连续。导函数存在但并非RR上连续函数。

设{rn}{rn}为闭区间[0,1][0,1]之间所有的有理数,则函数

f(x)=∑n=0∞12ng(x−rn)f(x)=∑n=0∞12ng(x−rn)

在[0,1][0,1]一致收敛

f′(x)=∑n=0∞12ng′(x−rn)f′(x)=∑n=0∞12ng′(x−rn)

在[0,1][0,1]上的有理数点rnrn上不连续,在[0,1][0,1]上的无理数点连续。

扩展资料:

1.导函数条件:

如果一个函数的定义域为全体实数,即函数在上都有定义,那么该函数是不是在定义域上处处可导呢?答案是否定的。函数在定义域中一点可导需要一定的条件是:函数在该点的左右两侧导数都存在且相等。这实际上是按照极限存在的一个充要条件(极限存在它的左右极限存在且相等)推导而来。

例如:f(x)=|x|在x=0处虽连续,但不可导(左导数-1,右导数1)

2.单调性:

一般地,设函数y=f(x)在某个区间内有导数,如果在这个区间y'>0,那么函数y=f(x)在这个区间上为增函数:如果在这个区间y'

参考资料:百度百科-导函数

声明:你问我答网所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系fangmu6661024@163.com