一个函数在某一区间上连续(可导)指的是该函数在此区间的任意一点上连续(可导)。
至于判断在某一点上函数是否连续或可导,即判断某个极限是否存在。
判断函数f在点x0处是否连续,即判断极限lim(x--x0)f(x)是否存在且等于f(x0)。
判断函数f在点x0处是否可导,即判断极限lim(dx--0)(f(x+dx)-f(x))/dx是否存在。
对于连续性,在自然界中有许多现象,如气温的变化,植物的生长等都是连续地变化着的。这种现象在函数关系上的反映,就是函数的连续性。
设函数
一个函数在开区间
显然,由极限的性质可知,一个函数在某点连续的充要条件是它在该点左右都连续。
扩展资料:
如果f是在x0处可导的函数,则f一定在x0处连续,特别地,任何可导函数一定在其定义域内每一点都连续。反过来并不一定。事实上,存在一个在其定义域上处处连续函数,但处处不可导。
间断有以下三种情况:
1.在点
2.在
3.虽然
参考资料:
参考资料: