(1)a(n+1)=f(an)=2an/(an+1)
1/a(n+1)=(an+1)/2an=1/2+1/2an
1/a(n+1)-1=(1/2)*(1/an-1)
因为a1=2/3,所以1/a1-1=1/2
即{1/an-1}是以1/2为首项,1/2为公比的等比数列
1/an-1=(1/2)^n
1/an=(1+2^n)/2^n
an=2^n/(1+2^n)=1-1/(1+2^n)
bn=an/(1-an)=[2^n/(1+2^n)]/[1/(1+2^n)]=2^n
即{bn}是以2为首项,2为公比的等比数列
(2)cn=(n+1)/bn=(n+1)/2^n
-2cn=-(n+1)/2^(n-1)
cn-2c(n-1)=(n+1)/2^n-n/2^n=1/2^n
c(n-1)-2c(n-2)=1/2^(n-1)
......
c3-2c2=1/2^3
c2-2c1=1/2^2
c1=1
上述式子相加,得:
(c1+c2+...+cn)-2(c1+c2+...+cn)=1+(1/4)*[1-1/2^(n-1)]/(1-1/2)-(n+1)/2^(n-1)
-Sn=3/2-(2n+3)/2^n
Sn=(2n+3)/2^n-3/2