(a+b)^3=a^3+3a^2b+3ab^2+b^3。
解答过程如下:
(a+b)^3
=(a+b)^2*(a+b)
=(a^2+2ab+b^2)(a+b)
=a^3+2a^2b+ab^2+a^2b+2ab^2+b^3
=a^3+3a^2b+3ab^2+b^3
扩展资料:
其他相关公式:
(1)a³+b³=a³+a²b-a²b+b³
=a²(a+b)-b(a²-b²)
=a²(a+b)-b(a+b)(a-b)
=(a+b)[a²-b(a-b)]
=(a+b)(a²-ab+b²)
(2)a³-b³=a³-a²b+a²b-b³
=a²(a-b)+b(a²-b²)
=a²(a-b)+b(a+b)(a-b)
=(a-b)[a²+b(a+b)]
=(a-b)(a²+ab+b²)