设∑是球面x2+y2+z2=4的外侧,则对坐标的曲面积分∫∫x^2dxdy=

2022-08-06 财经 71阅读
D是∑在xOy平面的投影,方程为x^2+y^2=4
∫∫[∑] x^2dxdy=∫∫[D] x^2dxdy
由轮换对称性有∫∫[D] x^2dxdy=∫∫[D] y^2dxdy
所以∫∫[D] x^2dxdy=(1/2)∫∫[D] x^2+y^2dxdy=(1/2)∫[0->2π]∫[0->2] r^3 drdθ=4π
声明:你问我答网所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系fangmu6661024@163.com