直角三角形中,30度的角所对的直角边等于斜边的一半,这个定理是怎么推导出的?

2021-12-16 教育 355阅读

证法1:

延长BA到D,使AD=AB,连接CD。

∵∠BAC=90°,AB=AD,

∴AC垂直平分BD,

∴BC=CD(垂直平分线上的点到线段两端距离相等),

∵∠B=90°-∠ACB=90°-30°=60°,

∴△BCD是等边三角形(有一个角是60°的等腰三角形是等边三角形),

∴BD=BC,

∵AB=AD=1/2BD,

∴AB=1/2BC。

证法2:

取BC的中点D,连接AD。

∵∠BAC=90°,

∴AD=1/2BC=BD(直角三角形斜边中线等于斜边的一半),

∵∠B=90°-∠ACB=90°-30°=60°,

∴△ABD是等边三角形(有一个角是60°的等腰三角形是等边三角形),

∴AB=BD,

∴AB=1/2BC。

声明:你问我答网所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系fangmu6661024@163.com