任意角三角函数的定义与概念

2022-07-26 教育 79阅读

你好 

任意角的三角函数的定义:

在高中学习三角函数时,我们将要把锐角扩充到任意角,那么只在直角三角形中定义三角函数就不科学,不方便了.因此,对于任意角的三角函数,我们虽然仍在单位圆中来下定义,但是其含义就发生了微妙的变化.

如图所示:

在直角坐标系中,⊙O的半径为1,任意角α的三角函数定义如下:

正弦:∠α与单位圆的交点A的纵坐标与圆半径的比值叫做正弦,表示为:sinα=Ay/OA=Ay;其中Ay 叫做正弦线.

余弦: ∠α与单位圆的交点A的横坐标与圆半径的比值叫做余弦,表示为:cosα=Ax/OA=Ax;其中Ax 叫做余弦线.

正切: ∠α与单位圆的交点A的纵坐标与横坐标的比值叫做正切,表示为:tanα=Ay/Ax;

余切: ∠α与单位圆的交点A的横坐标与纵坐标的比值叫做余切,表示为:cotα=Ax/Ay; ;

正割: 圆半径和∠α与单位圆的交点A的横坐标的比值叫做正割,表示为:secα=OA/Ax=1/Ax;

余割: 圆半径和∠α与单位圆的交点A的纵坐标的比值叫做余割,表示为:cscα=OA/Ay=1/Ay;

声明:你问我答网所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系fangmu6661024@163.com