(2010?武汉五月调考)如图,△ABC内接于⊙O,AB是⊙O的直径,CD平分∠ACB交⊙O于点D,交AB于点F,弦AE⊥

2020-10-27 社会 69阅读
解答:(1)证明:∵AB是⊙O的直径,
∴∠ACB=90°;
∵CD平分∠ACB,
∴∠ACD=∠FCB=45°;
∵AE⊥CD,
∴∠CAE=45°=∠FCB;
在△ACE与△BCF中,∠CAE=∠FCB,∠E=∠B,
∴△ACE∽△CFB;

(2)解:延长AE、CB交于点M;
∵∠FCB=45°,∠CHM=90°,
∴∠M=45°=∠CAE;
∴HA=HC=HM,CM=CA=6;
∵CB=4,
∴BM=6-4=2;
∵OA=OB,HA=HM,
∴OH是△ABM的中位线,
∴OH=
1
2
BM=1.
声明:你问我答网所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系fangmu6661024@163.com