设A,B都是m*n矩阵,且r(A)+r(B)<n,求证齐次线性方程组Ax=0和Bx=0有非零的公共解

2020-06-24 社会 117阅读
设n-r(A)=s,n-r(B)=t,则s+t>n,
Ax=0有s组线性无关的解,设为a1,……,as
而Bx=0有t组线性无关的解,设为b1,……,bt,
由于s+t大于n,因此a1,……,as,b1,……,bt线性相关,因此a1可以由a2,……,as,b1,……,bt线性表示,即存在实数k2,……,ks,l1,……,lt,使得
a1=k2a2+……+ksas+l1b1+……+ltbt,
由于a1,……,as线性无关,因此l1,……,lt不能全部为0,上式写为
a1-(k2a2+……+ksas)=l1b1+……+ltbt,
则此为两个方程组的非零公共解
声明:你问我答网所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系fangmu6661024@163.com