椭圆的参数方程中参数的意义

2023-05-03 综合 112阅读

如图。红搜铅烂点M的轨迹是椭圆,M(x,y)=(|OA|cosa,|OB|sina)

所以离心角a就是那条倾斜直线的角。

椭圆的参数方程为:x=acosα;y=bsinα


其中:a代表半长轴的长度,b代表半短轴的长度,α表示与x周正半轴所成的角度(逆时针),且a^2=b^2+c^2,且c/a为椭圆的离心率。

扩展资料:

椭圆是平面内到定点F1、F2的距离之和等于常数(大于|F1F2|)的动点P的轨迹,F1、F2称为椭圆的两个焦点。其数学表达式为:|PF1|+|PF2|=2a(2a>|F1F2|)。

椭圆是圆锥曲线的一种,即圆锥与平面的截线。椭圆的周长等于特定的正弦曲线在一个周期内的长度。

根据椭圆的一条重要性质:椭圆上的点与椭圆长轴(事实上只要是直径都可以)两端点连线的斜率之积是定值,定值为  (前提是长轴平行于x轴。若长轴平行于y轴,比如焦点在y轴上的椭圆,可以得到斜率世漏之积为 -a²/b²=1/(e²-1)),可以激凳得出:

在坐标轴内,动点(  )到两定点(  )(  )的斜率乘积等于常数m(-1<m<0)。

注意:考虑到斜率不存在时不满足乘积为常数,所以  无法取到,即该定义仅为去掉四个点的椭圆。

椭圆也可看做圆按一定方向作压缩或拉伸一定比例所得图形。

声明:你问我答网所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系fangmu6661024@163.com