如何将参数方程化为直角坐标方程

2020-09-21 综合 5391阅读

参数方程化为直角坐标方程的过程就是消参过程,常见方法有三种:

①代入法:利用解方程的技巧求出参数t,然后代入消去参数;

②三角法:利用三角恒等式消去参数;

③整体消元法:根据参数方程本身的结构特征,从整体上消去。

扩展资料

常见参数方程

曲线的极坐标参数方程ρ=f(t),θ=g(t)。

圆的参数方程 x=a+r cosθ y=b+r sinθ(θ∈ [0,2π) ) (a,b) 为圆心坐标,r 为圆半径,θ 为参数,(x,y) 为经过点的坐标

椭圆的参数方程 x=a cosθ  y=b sinθ(θ∈[0,2π)) a为长半轴长 b为短半轴长 θ为参数 [2]

双曲线的参数方程 x=a secθ (正割) y=b tanθ a为实半轴长 b为虚半轴长 θ为参数

抛物线的参数方程 x=2pt^2 y=2pt p表示焦点到准线的距离 t为参数

直线的参数方程 x=x'+tcosa y=y'+tsina,x',y'和a表示直线经过(x',y'),且倾斜角为a,t为参数

参考资料:百度百科 - 参数方程

声明:你问我答网所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系fangmu6661024@163.com