随机变量的独立性和相关性有什么联系?相关系数为零能说明什么

2023-05-17 综合 67阅读

相关一般指的是线性相关性,用相关系数来表示,相关系数为零代表两个变量间没有线性相关性。而独立意味着除了无线性相关外也不能有非线性相关,因此独立意味着不相关,但不相关不意味着独立,因为还可能有非线性相关的情况存在。

相关理论:

随机变量的独立性  独立性是概率论所独有的一个重要概念。设x1,x2,…,xn是n个随机变量,如果对任何n个实数x1,x2,…,xn,即它们的联合分布函数F(x1,x2,…,xn)等于它们各自的分布函数F1(x1),F2(x2),…,Fn(xn)的乘积,即则称x1,x2,…,xn是独立的。

这一定义可以直接推广到每一xk(k=1,2,…,n)是随机向量的情形。独立性的直观意义是:x1,x2,…,xn中的任何一个取值的概率规律,并不随其中的其他随机变量取什么值而改变。

在实际问题中通常用它来表征多个独立操作的随机试验结果或多种有独立来源的随机因素的概率特性,因此它对于概率统计的应用是十分重要的。

相关表和相关图可反映两个变量之间的相互关系及其相关方向,但无法确切地表明两个变量之间相关的程度。相关系数是用以反映变量之间相关关系旁芦密切程度的统计指标。

相关系数是按积差方法计算,同样以两变量与各自平均值的离差为基础,通过两个离差相乘来反映两变量之间相关程度;着重研究线性的单相关系数。

扩展资料:

研究方中启中法:

在研究随机变量的性质时,确定和计算它取某个数值或落入某个数值区间内的概率是特别重要的。因此,随机变量取某个数值或落入某个数值区间这样的基本事件的集合,应当属于所考虑的事件域。

根据这样的直观想法,利用概率论公理化的语言,取实数值的随机变量的数学定义可确切地表述如下:概率空间(Ω,F,p)上的随机变量x是定义于Ω上的实值可测函数,即对任意ω∈Ω,X(ω)为实数,且对任意实数x,使X(ω)≤x的一切ω组成的Ω的子集{ω:X(ω)≤x}是事件,也即是F中的元素。

事件{ω:X(ω)≤x}常简记作{x≤x},并称函数F(x)=p(x≤x),-∞<x<∞ ,为x的分布函数。

设X,Y是概率空间(Ω,F,p)上的两个随机变量,如果除去一个零概率事件外,X(ω)与Y(ω)相同,则称X=Y以概率1成立,也记作p(X=Y)=1或X=Y,α.s.(α.s.意即几乎必然)。

有些随机现象需要同时用多个随机变量来描述。例如对地面目标射击,弹着点的位置需要两个坐标才能确定,因此研究它要同时考虑两个随卖山机变量,一般称同一概率空间(Ω,F,p)上的n个随机变量构成的n维向量X=(x1,x2,…,xn)为n维随机向量。

随机变量可以看作一维随机向量。称n元x1,x2,…,xn的函数为X的(联合)分布函数。又如果(x1,x2)为二维随机向量,则称x1+ix2(i2=-1)为复随机变量。

参考资料来源:百度百科--随机变量

参考资料来源:百度百科--相关系数

声明:你问我答网所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系fangmu6661024@163.com