三阶行列式的逆矩阵,如何计算?

2021-12-08 综合 220阅读

求三阶行列式的逆矩阵的方法:

假设三阶矩阵A,用A的伴随矩阵除以A的行列式,得到的结果就是A的逆矩阵。

具体求解过程如下:

对于三阶矩阵A:

a11 a12 a13

a21 a22 a23

a31 a32 a33

行列式:|A|=a11a22a33+a12a23a31+a13a21a32-a11a23a32-a12a21a33-a13a22a31;

伴随矩阵:A*的各元素为

A11 A12 A13

A21 A22 A23

A31 A32 A33

A11 = (-1)^2 * (a22 * a33 - a23 * a32) = a22 * a33 - a23 * a32

A12 = (-1)^3 * (a21 * a33 - a23 * a31) = -a21 * a33 + a23 * a31

A13 = (-1)^4 * (a21 * a32 - a22 * a31) = a21 * a32 - a22 * a31

A21 = (-1)^3 * (a12 * a33 - a13 * a32) = -a12 * a33 + a13 * a32

……

A33 = (-1)^6 * (a11 * a22 - a12 * a21) = a11 * a22 - a12 * a21

所以得到A的伴随矩阵:

A11/|A|    A12/|A|    A13/|A|

A21/|A|    A22/|A|    A23/|A|

A31/|A|    A32/|A|    A33/|A|

扩展资料:

关于逆矩阵的性质:

1、矩阵A可逆的充要条件是A的行列式不等于0。  

2、可逆矩阵一定是方阵。  

3、如果矩阵A是可逆的,A的逆矩阵是唯一的。

4、可逆矩阵也被称为非奇异矩阵、满秩矩阵。

参考资料来源:百度百科-逆矩阵

声明:你问我答网所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系fangmu6661024@163.com