具体的计算方法如上图所示
拓展资料:
行列式
行列式在数学中,是一个函数,其定义域为det的矩阵A,取值为一个标量,写作det(A)或 | A | 。行列式可以看做是有向面积或体积的概念在一般的欧几里得空间中的推广。或者说,在 n 维欧几里得空间中,行列式描述的是一个线性变换对“体积”所造成的影响。
行列式的基本性质
1、性质1:行列互换,行列式的值不变。
2、性质2:交换行列式的两行(列),行列式的值变号。
3、推论:若行列式中有两行(列)的对应元素相同,则此行列式的值为零。
4、性质3:若行列式的某一行(列)各元素都有公因子k,则k可提到行列式外。
5、推论1:数k乘行列式,等于用数k乘该行列式的某一行(列)。
6、推论2:若行列式有两行(列)元素对应成比例,则该行列式的值为零。
7、性质4:若行列式中某行(列)的每一个元素均为两数之和,则这个行列式等于两个行列式的和,这两个行列式分别以这两组数作为该行(列)的元素,其余各行(列)与原行列式相同。
8、性质5:将行列式某行(列)的k倍加到另一行(列)上,行列式的值不变。