高一数学等差和等比数列通项公式的推导过程和求和公式的推导过程

2022-03-31 教育 156阅读
1,a(1)=a,a(n)为公差为r的等差数列。

1-1,通项公式,
a(n)=a(n-1)+r=a(n-2)+2r=...=a[n-(n-1)]+(n-1)r=a(1)+(n-1)r=a+(n-1)r.
可用归纳法证明。

n=1时,a(1)=a+(1-1)r=a。成立。
假设n=k时,等差数列的通项公式成立。a(k)=a+(k-1)r
则,n=k+1时,a(k+1)=a(k)+r=a+(k-1)r+r=a+[(k+1)-1]r.
通项公式也成立。
因此,由归纳法知,等差数列的通项公式是正确的。

1-2,求和公式,
S(n)=a(1)+a(2)+...+a(n)

=a+(a+r)+...+[a+(n-1)r]

=na+r[1+2+...+(n-1)]

=na+n(n-1)r/2
同样,可用归纳法证明求和公式。(略)

2,a(1)=a,a(n)为公比为r(r不等于0)的等比数列。

2-1,通项公式,
a(n)=a(n-1)r=a(n-2)r^2=...=a[n-(n-1)]r^(n-1)=a(1)r^(n-1)=ar^(n-1).
可用归纳法证明等比数列的通项公式。(略)

2-2,求和公式,
S(n)=a(1)+a(2)+...+a(n)

=a+ar+...+ar^(n-1)

=a[1+r+...+r^(n-1)]

r不等于1时,
S(n)=a[1-r^n]/[1-r]

r=1时,
S(n)=na.

同样,可用归纳法证明求和公式。(略)
声明:你问我答网所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系fangmu6661024@163.com