证: 设 A=(aij) 与任意的n阶矩阵可交换, 则A必是n阶方阵.
设Eij是第i行第j列位置为1,其余都是0的n阶方阵.
则EijA = AEij
EijA 是 第i行为 aj1,aj2,...,ajn, 其余行都是0的方阵
AEij 是 第j列为 a1i,a2i,...,ani, 其余列都是0的方阵
所以当i≠j时, aij=0.
所以A是一个对角矩阵.
设E(i,j)是对换i,j两行的初等矩阵.
由E(i,j)A=AE(i,j)可得
aii=ajj
所以A是主对角线元素相同的对角矩阵, 即数量矩阵.