对一个数进行因式分解,可以采用递归的办法,先找出这个数最小的因式,然后再把这个数除以因式,继续找,直到除到这个数成为质数为止。比如要对60进行因式分解,可以先找到60的最小因式2;然后再把60除以2得到30,接着找30的最小因式得到2;再把30除以2得到15,接着找15的最小因式3;然后再把15除以3得到5;然后5是质数,无法再分解,最终就得到60的因式共有4个,分别是2,2,3,5。而判断一个数b是不是另一个数a的因式必须符合两个标准,一是a必须能被b整除;二是b必须是质数。根据以上思路,代码如下:(为了简化程序,这里把判断是否质数和分解因式都分别做成一个独立的函数)
【程序代码】
#include
#include
//---------------
bool SS(int a) //质数判断函数(质数返回1,否则0)
{if(a if(a==2) return true; //2是特殊的质数
int i,n=(int)sqrt(a); //n是除数,开方可以减少检测个数
for(i=2;i if(a%i==0) return false; //如果能被整除说明不是质数, 返回0; return true;} //检测完了还没可以被整除的数,返回1
//---------------
void Ys(int s[],int a) //因式分解的递归函数
{int i,n; //循环变量和因式个数
n=++s[0]; //每递归调用一次因式个数增加1
if(SS(a)) {s[n]=a; return ;} //如果a是质数,没有因式,函数结束
for(i=2;i if(SS(i)&&a%i==0) break; //如果i是质数并且a可以被i整除
s[n]=i; //保存这个因式
Ys(s,a/i);} //递归调用函数继续分解下个因式
//---------------
int main() //主函数
{int a,i; //整型变量
int S[100]; //用于存放因式的数组
for(;;) //弄一个无穷循环
{printf("请输入一个正整数(-1结束):"); //显示提示信息
scanf("%d",&a); //从键盘输入一个整数
if(a==-1) break; //如果输入-1退出循环
if(a S[0]=0; //因式个数清零
Ys(S,a); //调用函数分解因式
printf("%d共有%d个因式,分别是:",a,S[0]);//显示因式个数
for(i=1;i printf("\n\n");} //显示完所有因式换行
printf("\n"); //结束程序前再空一行
system("PAUSE"); //屏幕暂停查看显示结果
return 0;} //结束程序
【运行结果】
以上程序在DEV C++上运行通过。
截图如下: