3次方的因式分解

2020-06-16 教育 151阅读

原发布者:wangweiyang1

下面几种方法仅供参考1、可以用待定系数法来解决。根据高等数学中的理论,任何一个高次多项式,都可以分解为若干个一次因式和判别式(B^2-4ac<0)的二次因式的乘积。所以你假设原始可以分解为(ax+b)(cx+d)(ex^2+fx+g)然后把这个式子展开,和你要分解的那个原式用对应系数相等的法则来求解出常数a,b,c,d,e,f,g的值就可以了。2、试根法例如x^3-5x^2+17x-13看看x等于什么可以使他等于0显然x=1可以所以有一个因式是x-1所以x^3-5x^2+17x-13=x^3-x^2-4x^2+4x+13x-13=x^2(x-1)-4x(x-1)+13(x-1)=(x-1)(x^2-4x+13)3一元三次方程的求根公式用通常的演绎思维是作不出来的,用类似解一元二次方程的求根公式的配方法只能将型如ax^3+bx^2+cx+d+0的标准型一元三次方程形式化为x^3+px+q=0的特殊型。一元三次方程的求解公式的解法只能用归纳思维得到,即根据一元一次方程、一元二次方程及特殊的高次方程的求根公式的形式归纳出一元三次方程的求根公式的形式。归纳出来的形如x^3+px+q=0的一元三次方程的求根公式的形式应该为x=A^(1/3)+B^(1/3)型,即为两个开立方之和。归纳出了一元三次方程求根公式的形式,下一步的工作就是求出开立方里面的内容,也就是用p和q表示A和B。方法如下:(1)将x=A^(1/3)+B^(1/3)两边同时立方可以得到(2)x^3=(A+B)+3(AB)^(1/3)(A^(1/3)+B^(1/3))(3)由于x=A^(1/3)+B^(1/3),所以(2)可化为x^3=(A+B)+3(AB)^(1/3)x,移项可得(4)x^3-3(AB)^(1/3)x-(A+B)=0,和一元三次
声明:你问我答网所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系fangmu6661024@163.com