解法一:(加法结合律)
1+2+3+......+100
=(1+100)+(2+99)+(3+98)+......+(50+51)
=101x50
=5050
解法二:
1+2+3+......+(n-2)+(n-1)+n=x
则n+(n-1)+(n-2)+......+3+2+1=x
两式相加,得
(n+1)+(n+1)+(n+1)+.....+(n+1)=2x
所以,n(n+1)=2x
所以,x=n(n+1)/2
所以,1+2+3+......+n=n(n+1)/2
1+2+3+.....+100=100×(100+1)/2=5050
解法三:
(首数+尾数)*个数÷2
=(1+100)*100÷2
=5050