(1) Norminal Data 定类变量:变量的不同取值仅仅代表了不同类的事物,这样的变量叫定类变量。问卷的人口特征中最常使用的问题,而调查被访对象的“性别”,就是 定类变量。对于定类变量,加减乘除等运算是没有实际意义的。
(2) Ordinal Data定序变量:变量的值不仅能够代表事物的分类,还能代表事物按某种特性的排序,这样的变量叫定序变量。问卷的人口特征中最常使用的问题“教育程度“,以及态度量表题目等都是定序变量,定序变量的值之间可以比较大小,或者有强弱顺序,但两个值的差一般没有什么实际意义。
(3)Interval Data 定距变量:变量的值之间可以比较大小,两个值的差有实际意义,这样的变量叫定距变量。有时问卷在调查被访者的“年龄”和“每月平均收入”,都是定距变量。
(4) Ratio Data 定比变量, 有绝对0点,如质量,高度。定比变量与定距变量在市场调查中一般不加以区分,它们的差别在于,定距变量取值为“0”时,不表示“没有”,仅仅是取值为0。定比变量取值为“0”时,则表示“没有”。
If you work with any statistical analysis tool, sometimes you may have run into configuring the data into either of these following categories: Nominal, Ordinal, Interval, Ratio.
Here is what each term means:
Nominal: Simply names or call them set of characters
Example: Full name, fruits, cars, etc
Ordinal: Nominal + They have order
Example: Small, medium, big
Interval: Ordinal + the intervals between each value are equally split
Example: temperature in Fahrenheit scale:10 20 30 etcNote that 20F is not twice as cold as 40F. So multiplication does not make sense on Interval data. But addition and subtraction works. Which brings us to
next point: Ratio
Ratio: Interval + multiplication makes sense
Weight: 60KG, 120KG.120 KG = 2 * 60 KG
I hope the examples are of help when you are working with statistical analysis tools and need to categorize the data.