请列举几个用“博弈论”在实际生活中分析问题的例子。

2021-11-04 国际 354阅读

1、智猪博弈

假设猪圈里有一头大猪、一头小猪。

猪圈的一头有猪食槽(两猪均在食槽端),另一头安装着控制猪食供应的按钮,按一下按钮会有10个单位的猪食进槽,但是在去往食槽的路上会有两个单位猪食的体能消耗,若大猪先到槽边,大小猪吃到食物的收益比是6:4;同时行动(去按按钮),收益比是7∶3;小猪先到槽边,收益比是9:1。

那么,在两头猪都有智慧的前提下,最终结果是小猪选择等待。

"智猪博弈"由纳什于1950年提出。

实际上小猪选择等待,让大猪去按控制按钮,而自己选择“坐船”(或称为搭便车)的原因很简单:在大猪选择行动的前提下,小猪选择等待的话,小猪可得到4个单位的纯收益,而小猪行动的话,则仅仅可以获得大猪吃剩的1个单位的纯收益,所以等待优于行动。

在大猪选择等待的前提下,小猪如果行动的话,小猪的收入将不抵成本,纯收益为-1单位,如果小猪也选择等待的话,那么小猪的收益为零,成本也为零,总之,等待还是要优于行动。

当大猪选择行动的时候,小猪如果行动,其收益是1,而小猪等待的话,收益是4,所以小猪选择等待;当大猪选择等待的时候,小猪如果行动的话,其收益是-1,而小猪等待的话,收益是0,所以小猪也选择等待。

综合来看,无论大猪是选择行动还是等待,小猪的选择都将是等待,即等待是小猪的占优策略。

2、协同攻击难题

两个将军各带领自己的部队埋伏在相距一定距离的两个山上,等候敌人。将军A得到可靠情报说,敌人刚刚到达,立足未稳。如果敌人没有防备,两股部队一起进攻的话,就能够获得胜利;而如果只有一方进攻的话,进攻方将失败。这是两位将军都知道的。

A遇到了一个难题:如何与将军B协同进攻?那时没有电话之类的通讯工具,只有通过派情报员来传递消息。将军A派遣一个情报员去了将军B那里,告诉将军B:敌人没有防备,两军于黎明一起进攻。

然而可能发生的情况是,情报员失踪或者被敌人抓获。即:将军A虽然派遣情报员向将军B传达“黎明一起进攻”的信息,但他不能确定将军B是否收到他的信息。

事实上,情报员回来了。将军A又陷入了迷茫:将军B怎么知道情报员肯定回来了?将军B如果不能肯定情报员回来的话,他必定不会贸然进攻的。于是将军A又将该情报员派遣到B地。然而,他不能保证这次情报员肯定到了将军B那里……

这就是“协同攻击难题”,它是由格莱斯(J.Gray)于1978年提出。更为糟糕的是,有学者证明,不论这个情报员来回成功地跑多少次,都不能使两个将军一起进攻。

扩展资料

1928年,冯·诺依曼证明了博弈论的基本原理,从而宣告了博弈论的正式诞生。1944年,冯·诺依曼和摩根斯坦共著的划时代巨著《博弈论与经济行为》将二人博弈推广到n人博弈结构并将博弈论系统地应用于经济领域,从而奠定了这一学科的基础和理论体系。

1950~1951年,约翰·福布斯·纳什利用不动点定理证明了均衡点的存在,为博弈论的一般化奠定了坚实的基础。纳什的开创性论文《n人博弈的均衡点》(1950),《非合作博弈》(1951)等等,给出了纳什均衡的概念和均衡存在定理。

此外,莱因哈德·泽尔腾、约翰·海萨尼的研究也对博弈论发展起到推动作用。今天博弈论已发展成一门较完善的学科。在金融学、证券学、生物学、经济学、国际关系、计算机科学、政治学、军事战略和其他很多学科都有广泛的应用。

参考资料来源:百度百科-博弈论

声明:你问我答网所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系fangmu6661024@163.com