勾股定理也可以用哪些图形表示?
(1)大正方形的面积为:c2,中间空白部分正方形面积为:(b-a)2;四个阴影部分直角三角形面积和为:4×12ab;由图形关系可知:大正方形面积=空白正方形面积+四直角三角形面积,即有:c2=(b-a)2+4×12ab=b2-2ab+a2+2ab=a2+b2;(2)如图示:大正方形边长为(x+y)所以面积为:(x+y)2,它的面积也等于两个边长分别为x,y和两个长为x宽为y的矩形面积之和,即x2+2xy+y2所以有:(x+y)2=x2+2xy+y2成立;(3)如图示:大矩形的长、宽分别为(x+p),(x+q),则其面积为:(x+p)?(x+q),从图形关系上可得大矩形为一个边长为x的正方形和三个小矩形构成的则其面积又可表示为:x2+px+qx+pq,则有:(x+p)(x+q)=x2+px+qx+pq=x2+(p+q)x+pq.