解答:解:左上角阴影部分的长为AE,宽为AF=3b,右下角阴影部分的长为PC,宽为a,
∵AD=BC,即AE+ED=AE+a,BC=BP+PC=4b+PC,
∴AE+a=4b+PC,即AE-PC=4b-a,
∴阴影部分面积之差S=AE?AF-PC?CG=3bAE-aPC=3b(PC+4b-a)-aPC=(3b-a)PC+12b2-3ab,
则3b-a=0,即a=3b.
解法二:既然BC是变化的,当点P与点C重合开始,然后BC向右伸展,
设向右伸展长度为X,左上阴影增加的是3bX,右下阴影增加的是aX,因为S不变,
∴增加的面积相等,
∴3bX=aX,
∴a=3b.
故选:B.