设f﹙x﹚为[-a,a]上的连续函数,则定积分∫﹙-a到a﹚f﹙-x﹚dx=_____

2020-06-29 科技 69阅读

∫[-a,a]f(-x)dx

u=-x x=-u

=∫[a,-a]f(u)d(-u)

=-∫[a,-a]f(u)du

=∫[-a,a]f(u)du

=∫[-a,a]f(x)dx

函数y=f(x)当自变量x的变化很小时,所引起的因变量y的变化也很小。例如,气温随时间变化,只要时间变化很小,气温的变化也是很小的;又如,自由落体的位移随时间变化,只要时间变化足够短,位移的变化也是很小的。

扩展资料:

在函数极限的定义中曾经强调过,当x→x0时f(x)有没有极限,与f(x)在点x0处是否有定义并无关系。但由于现在函数在x0处连续,则表示f(x0)必定存在,显然当Δx=0(即x=x0)时Δy=0<ε。于是上述推导过程中可以取消0<|Δx|这个条件。

由于已经证明了f(x)在[a,b]上有界,因此由确界原理可知,f(x)的值域f([a,b])必有上确界和下确界。

设f([a,b])的上确界为M,则必存在ξ∈[a,b]使f(ξ)=M,若不是这样,根据上界的定义,对任意x∈[a,b],都有f(x)

参考资料来源:百度百科——连续函数

声明:你问我答网所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系fangmu6661024@163.com