定义 1
如果:AA'=E(E为单位矩阵,A'表示“矩阵A的转置矩阵”。)或A′A=E,则n阶实矩阵 A称为正交矩阵, 若A为正交阵,则满足以下条件:
1) A 是正交矩阵
2) AA′=E(E为单位矩阵)
3) A′是正交矩阵
4) A的各行是单位向量且两两正交
5) A的各列是单位向量且两两正交
6) (Ax,Ay)=(x,y) x,y∈R
正交矩阵通常用字母Q表示。
举例:A=[r11 r12 r13;r21 r22 r23;r31 r32 r33]
则有:r11^2+r12^2+r13^2=r21^2+r22^2+r23^2=r31^2+r32^2+r33^2=1
r11*r12+r21*r22+r31*r32=0等性质
正交方阵是欧氏空间中标准正交基到标准正交基的过渡矩阵。
在矩阵论中,实数正交矩阵是方块矩阵 Q,它的转置矩阵是它的逆矩阵:
,如果正交矩阵的行列式为 +1,则我们称之为特殊正交矩阵:
http://baike.baidu.com/view/21085.htm