二阶矩阵求逆矩阵是怎么说,主对角线交换,副对角线变号是吗?

2023-05-03 综合 178阅读

不对 ,是由“主对角元互换,次对角元变号”得到其伴随矩阵,还要乘上原矩阵的行列式的倒数才得到原矩阵的逆。

理论基础:

求元索为具体数字的矩阵的逆矩阵,常用初等变换法‘如果A可逆,则A’可通过初等变换,化为单位矩阵 I ,即存在初等矩阵使

 

(1)

 

(2)用

 

右乘上式两端,得:

 

比较(1)、(2)两式,可以看到当A通过初等变换化为单位处阵的同时,对单位矩键芦阵I作同样的初等变换,就化为A的逆矩阵A²。

扩展资料:

其他方法:

定理:n阶矩阵

 

为可逆的充分必要条件是A非奇异,且:

其中歼亮歼,

 

是|A|中元素

 

的代数余子式;矩阵

称为矩阵A的伴随矩阵,记作A*,于是有

 

用此方法求逆知阵,对于小型矩阵,特别是二阶方阵求逆既方便、快阵,又有规律可循。因为二阶可逆矩阵的伴随矩阵,只需要将主对角线元素的位置互换,次对角线的元索变号即可。

若可逆矩阵是二阶或二阶以上矩阵,在求逆矩阵的过程中,需要求9个或9个以上代数余子式,还要计算一个三阶氏冲或三阶以上行列式,工作量大且中途难免出现符号及计算的差错。对于求出的逆炬阵是否正确,一般要通过

 

来检验。一旦发现错误,必须对每一计算逐一排查。

参考资料来源:百度百科--矩阵

参考资料来源:百度百科--矩阵求逆

声明:你问我答网所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系fangmu6661024@163.com