证明: 因为 A=E-2αα^T/(α^Tα)
所以 A^T=E^T-2(αα^T)^T/(α^Tα)=E-2αα^T/(α^Tα)
所以 AA^T = [E-2αα^T/(α^Tα)][E-2αα^T/(α^Tα)]
= E-2αα^T/(α^Tα)-2αα^T/(α^Tα)+4αα^Tαα^T/(α^Tα)^2
= E-4αα^T/(α^Tα)+4α(α^Tα)α^T/(α^Tα)^2
= E-4αα^T/(α^Tα)+4αα^T/(α^Tα)
= E
所以A是正交矩阵
扩展资料
可逆矩阵的性质:
1、可逆矩阵一定是方阵。
2、如果矩阵A是可逆的,其逆矩阵是唯一的。
3、A的逆矩阵的逆矩阵还是A。记作(A-1)-1=A。
4、可逆矩阵A的转置矩阵AT也可逆,并且(AT)-1=(A-1)T (转置的逆等于逆的转置)。
5、若矩阵A可逆,则矩阵A满足消去律。即AB=O(或BA=O),则B=O,AB=AC(或BA=CA),则B=C。
6、两个可逆矩阵的乘积依然可逆。
7、矩阵可逆当且仅当它是满秩矩阵。