秩是怎么来的你理解吧?阶梯化消到最简。
那么方程组求解只能进行初等行变变换,你一定知道所谓的初等行变换就是消除掉没有用的方程,也就是线性相关的行向量,留下有用的并且形式最简的方程。
okay,如果你理解到这里。非齐次线性方程组,AX=B组成的增广矩阵,经过初等行变换,也就是方程组的消除,最后增广矩阵的秩比系数矩阵大1,也就是假设最后一个方程组前面的x的系数都是0,但是增广的最后一行却有个数。
举个例子吧:0*X1+0*X2+0*X3=4 那么请问这个方程组可能存在么?不可能啊!x取什么值也不可能满足这个方程存在,所以无解。