原因在于根轨迹,根轨迹是由开环零极点及闭环特征方程绘制的,描述的是闭环极点的轨迹。开环极点在s右半平面,而根轨迹由开环极点出发,必有部分根轨迹在s右半平面,必有闭环极点在s右半平面,当取到这些值的时候,原因就如楼上所言,t趋于无穷时其值发散,所以不稳定。
开环传递函数为一个开环系统(如滤波器)的输出与输入之比与频率的函数关系,即系统的频率域特性。常用其振幅频率特性和相位频率特性(函数)表示。传递函数表达了系统的本身特性而与输入量无关。
扩展资料
开环传递函数在自动控制系统中一般而言它有两种解释:
第一种描述的是开环系统(没有反馈的系统)的动态特性。它是开环系统中系统输出的拉氏变换与系统输入的拉氏变换之比,即系统的开环传递函数C(s)/R(s)。
第二种假设系统单输入R(s)、单输出C(s),前向通道传递函数G1(s)G2(s),反馈(反向通道)为负反馈H(s):那么“人为”断开系统的主反馈通路,将前向通道传递函数与反馈通路传递函数相乘,即得系统的开环传递函数,那么开环传递函数相当于B(s)/R(s),即为H(s)G1(s)G2(s)。
参考资料来源: