定积分求旋转体体积的两个公式分别什么情况用

2020-08-25 科技 1382阅读

1、dy求积分法

设积分区域是由两条直线x=a,x=b(a

此时对任意取定的x0∈[a,b],过(x0,y0)作垂直于x轴的平面x=x0,该平面与曲顶柱体相交所得截面为底,z=f(x0,y)为曲边的曲边梯形,由于x0的任意性,上述曲顶柱体可看成平行截面面积S(x)从a到b求定积分的体积,从而得到dy求法。

2、dx求积分法

设积分区域是由两条直线x=a,x=b(a

此时对任意取定的y0∈[a,b],过(x0,y0)作垂直于x轴的平面y=y0,该平面与曲顶柱体相交所得截面为底,z=f(x,yo)为曲边的曲边梯形,由于y0的任意性,上述曲顶柱体可看成平行截面面积S(x)从a到b求定积分的体积,从而得到dx求法。

扩展资料

几何意义

在空间直角坐标系中,二重积分是各部分区域上柱体体积的代数和,在xoy平面上方的取正,在xoy平面下方的取负。某些特殊的被积函数f(x,y)的所表示的曲面和D底面所为围的曲顶柱体的体积公式已知,可以用二重积分的几何意义的来计算。

数值意义

二重积分和定积分一样不是函数,而是一个数值。因此若一个连续函数f(x,y)内含有二重积分,对它进行二次积分,这个二重积分的具体数值便可以求解出来。

参考资料来源百度百科—二重积分

参考资料来源百度百科—多重积分

声明:你问我答网所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系fangmu6661024@163.com