行列式Dn=det(aij),其中aij=|i-j|,则该行列式等于多少

2020-10-27 文化 706阅读

先按定义写出行列式的各元素,然后再利用行列式的性质化为下三角行列式。下图的计算过程与答案代参考。

矩阵行列式是指矩阵的全部元素构成的行列式,设A=(aij)是数域P上的一个n阶矩阵,则所有A=(aij)中的元素组成的行列式称为矩阵A的行列式,记为|A|或det(A)。若A,B是数域P上的两个n阶矩阵,k是P中的任一个数,则|AB|=|A||B|,|kA|=kⁿ|A|,|A*|=|A|n-1,其中A*是A的伴随矩阵;若A是可逆矩阵,则|A-1|=|A|-1。

扩展资料

设A=(aij)是数域P上的一个n阶矩阵,则所有A=(aij)中的元素组成的行列式称为矩阵A的行列式,记为|A|或det(A)。若A,B是数域P上的两个n阶矩阵,k是P中的任一个数,则|AB|=|A||B|,|kA|=kⁿ|A|,|A*|=|A|n-1,其中A*是A的伴随矩阵;若A是可逆矩阵,则|A-1|=|A|-1。

令A为n×n矩阵。

(i) 若A有一行或一列包含的元素全为零,则det(A)=0。

(ii) 若A有两行或两列相等,则det(A)=0。

这些结论容易利用余子式展开加以证明。

声明:你问我答网所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系fangmu6661024@163.com