概率论 设A.B.C相互独立,证明AB与C独立,和A-B与C独立(证明题)

2020-06-22 社会 126阅读
要证AB与C独立就是证P[(AB)C]=P(AB)P(C),左边=P(ABC)=P(A)P(B)P(C),由于A,B相互独立,所以P(AB)=P(A)P(B),所以右边=P(A)P(B)P(C),得证。
第二个也一样,要证的说P[(A-B)C]=P(A-B)P(C),左边=P(AC)-P(BC)=[P(A)-P(B)]P(C)=右边,证毕。
声明:你问我答网所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系fangmu6661024@163.com