是不对的。
相关系数r是根据样本数据计算的度量两个变量之间线性关系强度的统计量。如果相关系数r=0,说明两个变量之间不存在线性相关关系。并不说明变量之间不存在其它相关关系,比如非线性相关关系。
Pearson相关系数的适用条件:
1、适用于线性相关的情形,对于曲线相关等更为复杂的情形、积差相关系数的大小并不能代表相关性的强弱。
2、无明显异常值,存在极端值则予剔除或转换。
3、变量呈双变量正态分布,如各自服从正态分布两个变量计算Pearson相关系数、假阳率偏高一点。
扩展资料
利用样本相关系数推断总体中两个变量是否相关,可以用t 统计量对H0假设(即二者相关系数为0)进行检验。若t检验显著,则拒绝原假设,即两个变量是线性相关的;反之,则不能拒绝原假设,即两个变量不是线性相关的。
r的取值为,-1~+1。r>0表明两个变量是正相关,即一个变量的值越大,另一个变量的值也会越大;r<0表明两个变量是负相关,即一个变量的值越大另一个变量的值反而会越小。
r 的绝对值越大,则两变量相关性越强。若r=0,表明两个变量间不是线性相关,但可能存在其他方式的相关(比如曲线方式)。
(1)一般认为:|r|≥0.8时,可认为两变量间高度相关;0.5≤|r|<0.8,可认为两变量中度相关;0.3≤|r|<0.5,可认为两变量低度相关;|r|<0.3,可认为两变量基本不相关。
(2)也有认为:|r|≥0.8时,可认为两变量间极高度相关;0.6≤|r|<0.8,可认为两变量高度相关;0.4≤|r|<0.6,可认为两变量中度相关;0.2≤|r|<0.4,可认为两变量低度相关;|r|<0.2,可认为两变量基本不相关。
(3)还有认为:|r|≥0.7时,可认为两变量间强相关;0.4≤|r|<0.7,可认为两变量中度相关;0.2≤|r|<0.4,可认为两变量弱相关;|r|<0.2,可认为两变量极弱相关或不相关。
参考资料来源:百度百科-相关系数