用求导及积分法比较好求:
记f(x)=∑x^(2n-1)/(2n-1)
求导得:f'(x)=∑x^(2n-2)
这样右端就可以求和了,f'(x)=1/(1-x²)=1/2[1/(1-x)+1/(1+x)]
积分,就得到f(x)=C+1/2[-ln(1-x)+ln(1+x)]
由于有f(0)=0, 因此得C=0
故f(x)=1/2ln[(1+x)/(1-x)]
而∑1/[(2n-1)2^n]=1/√2∑1/[(2n-1) (√2)^(2n-1)]
=1/√2 f(1/√2)
=1/√2*1/2*ln[(1+1/√2)/(1-1/√2)]
=1/√2*ln(√2+1)