对圆锥面的曲面积分怎么算?

2022-03-10 社会 362阅读
∵dS=√[1+(αz/αx)²+(αz/αy)²]dxdy
=√[1+(x/z)²+(y/z)²]dxdy
=√2dxdy
∴原式=∫dθ∫(r²sinθcosθ+r²sinθ+r²cosθ)rdr(做极坐标变换)
=4a^4∫(sinθcosθ+sinθ+cosθ)(cosθ)^4dθ
=4a^4∫[sinθ(cosθ)^5+sinθ(cosθ)^4+cosθ(1-2sin²θ+(sinθ)^4)]dθ
=4a^4[(-1/6)(cosθ)^6+(-1/5)(cosθ)^5+sinθ-(2/3)sin³θ+(1/5)(sinθ)^5]│
=4a^4(1-2/3+1/5+1-2/3+1/5)
=(64/15)a^4
声明:你问我答网所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系fangmu6661024@163.com