球截面圆的周长函数为2(pi)√(R^2-x^2)
对x进行[0,R]积分得到半球表面积
即dS=4(pi)√(R^2-x^2)
对dS积分,设x=R(sin t),t=[0,pi/2]
则dS=4(pi)R(cos t)√(R^2-(R(sin t))^2) dt
=4(pi)(R^2)(cos t)^2 dt
=2(pi)(R^2)+(2(pi)(R^2)(sin 2t) dt) ,t=[0,pi/2]
则解2(pi)(R^2)(sin 2t) dt积分有2(pi)(R^2)
即得S=4(pi)(R^2)