如图所示:
函数图像绘制步骤:列表---描点---连线
(1)列表取值时,x≠0,因为x=0函数无意义,为了使描出的点具有代表性,可以以“0”为中心,向两边对称式取值,即正、负数各一半,且互为相反数,这样也便于求y值。
(2)由于函数图象的特征还不清楚,尽量多取一些数值,多描一些点,从而便于连线,使画出的图象更精确。
(3)连线时要用平滑的曲线按照自变量从小到大的顺序连接,切忌画成折线。
因为解析式中,x不能为0,所以y也不能为0,反比例函数的图象不可能与x轴相交,也不可能与y轴相交,但随着x无限增大或是无限减少,函数值无限趋近于0,故图像无限接近于x轴。
反比例关系在应用题中属于归总问题。
反映在除法中,当被除数一定,除数和商成反比例关系。在分数中,当分数的分子一定,分母与分数值成反比例关系。
在比例中,比的前项一定,比的后项与比值成反比例关系。如果再把总数与份数关系具体化为:在购物问题中,总价一定,单价和数量成反比例关系。在行程问题中,总路程一定,速度和时间成反比例关系。在工程问题中,在地上挖个坑所花的时间也(大致地)和雇来挖坑的人数成反比的。
在笛卡尔坐标平面上,两个具有反比例关系的变量的图形是一对双曲线。该图线上的每一点的X和Y坐标值之积总是等于比例常数(k)。由于k非零,所以图线不会与坐标轴相交。