数据科学与大数据技术专业怎么样

2020-10-10 科技 98阅读
数据科学与大数据技术专业都学些什么?
属于交叉学科:以统计学、数学、计算机为三大支撑性学科;生物、医学、环境科学、经济学、社会学、管理学为应用拓展性学科。此外还需学习数据采集、分析、处理软件,学习数学建模软件及计算机编程语言等,知识结构是二专多能复合的跨界人才(有专业知识、有数据思维)。
数据科学与大数据技术专业人才需求情况怎样?
根据领英发布的《2016年中国互联网最热职位人才报告》显示,研发工程师、产品经理、人力资源、市场营销、运营和数据分析是中国护理万网行业需求最旺盛的职位。
目前国内有30万数据人才,预计2018年,大数据人才需求将有大幅增长,高端人才如大数据科学家的缺口在14万至19万之间;懂得利用大数据做决策的分析师和经理缺口达到150万,数据分析师现在需求就很旺盛了,2年工作经验的月薪可达到8K,硕士学历的数据分析师月薪可达到12K,5年工作经验的可达到40万至60万元。
数据科学与大数据技术专业可以从事的工作有哪些?
重视数据的机构已经越来越多,上到国防部,下到互联网创业公司、金融机构需要通过大数据项目来做创新驱动,需要数据分析或处理岗位也很多;常见的食品制造、零售电商、医疗制造、交通检测等也需要数据分析与处理,如优化库存,降低成本,预测需求等。人才主要分成三大类:大数据系统研发类、大数据应用开发类、大数据分析类。
数据科学与大数据技术专业报考建议:
1、当下企业用人现象:一个专业集群对应一个行业热点。大数据是交叉学科,走的是“复合型”培养路线,行业内从事相关职能的人专业背景各异。大数据作为人才培养方向在探索中,如果直接从各专业人才中遴选学苗开展硕士研究生阶段的教育会更适合一些,直接开设本科阶段的教育还相对不够成熟。
2、人才培养与行业发展存在差距。由于教学大纲更新不会太及时,大数据人才7年毕业(本科四年、硕士研究生三年)后,所学恐怕落后于行业发展。
3、大数据人才的典型胜任特征:善于做需求分析、写代码;善于与人沟通,喜欢探索未知;需要根据数据推演、分析、提出解决方案,有数据思维;需要持续保持学习状态;内性格上能动能静。
4、不同办学层次的院校开设此专业,培养模式会有差异。例如,高职类院校学生由于数学基础相对薄弱,会跟多偏向于工具的使用,如数据清洗、数据存储以及数据可视化等相关工具的使用;本科院校会倾向于大数据相关基础知识全面覆盖性教学,在研究生段则会专攻某一技术领域,比如数据挖掘、数据分析、商业智能、人工智能等。
声明:你问我答网所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系fangmu6661024@163.com