是的。可逆的对称矩阵还是对称矩阵。B^-1=A=A^T,当A是对称矩阵且可逆时正确。
A'=A 即A是对称矩阵,(A^-1)' = (A')^-1
所以 (A^-1)' = (A')^-1 = A^-1。矩阵A为n阶方阵,若存在n阶矩阵B,使得矩阵A、B的乘积为单位阵,则称A为可逆阵,B为A的逆矩阵。若方阵的逆阵存在,则称为可逆矩阵或非奇异矩阵,且其逆矩阵唯一。
扩展资料
矩阵可逆的充分必要条件:
AB=E;
A为满秩矩阵(即r(A)=n);
A的特征值全不为0;
A的行列式|A|≠0,也可表述为A不是奇异矩阵(即行列式为0的矩阵);
A等价于n阶单位矩阵;
A可表示成初等矩阵的乘积;
齐次线性方程组AX=0 仅有零解;
非齐次线性方程组AX=b 有唯一解;
A的行(列)向量组线性无关;
任一n维向量可由A的行(列)向量组线性表示。
其实以上条件全部是等价的。
参考资料来源:百度百科-可逆矩阵