大学物理静电场

2021-12-15 社会 161阅读
根据静电场的高斯定理,静电场的电场线起于正电荷或无穷远,静电场终止于负电荷或无穷远,故静电场是有源场.从安培环路定理来说它是一个无旋场.根据环量定理,静电场中环量恒等于零,表明静电场中沿任意闭合路径移动电荷,电场力所做的功都为零,因此静电场是保守场.
  根据库仑定律,两个点电荷之间的作用力跟它们的电荷量的乘积成正比,和它们距离的平方成反比,作用力的方向在它们的连线上,即F=kq1q2/r^2,其中q1、q2为两电荷的电荷量、k为静电力常量,约为9.0e+09牛顿米2/库2,r为两电荷中心点连线的距离。注意,点电荷是当带电体的距离比它们的大小大得多时,带电体的形状和大小可以忽略不计的电荷。
如果电场中存在导体,在电场力的作用下出现静电感应现象,使原静电场来中和的正、负电荷分离,出现在导体表面上。这些电荷称为感应电荷。总的电场是感应电荷与自由电荷共同作用结果。达到平衡时,导体内部的电场为零。静电感应现象有一些应用,但也可能造成危害。
电场中的绝缘介质又称为电介质。由于电场力的作用在原子尺度上静电场知识结构图出现了等效的束缚电荷。这种现象称为电介质的极化。对一种绝缘材料,当电场强度超过某一数值时,束缚电荷被迫流动造成介质击穿而失去其绝缘性能。因此静电场的大小对电工器件的设计及材料选择十分重要。有介质时的静电场是由束缚电荷及自由电荷共同产生的,为了表示这二者共同作用下的电场,可以引入另一个场矢量电通量密度D(又称电位移)。它定义为
  式中P为电介质的极化强度,则可得高斯通量定理
  公式式中q仅为S面内所有自由电荷,而不包括电介质的束缚电荷。高斯通量定理的微分形式为电位移的散度等于该点自由电荷(体)密度ρ,
  墷·D=ρ
  电介质的极化强度P与电场强度E有关,而电通量密度又与P和E有关,故可得表示电介质的本构方程
  D=εE
由于静电场是无旋场,故可用标量电位φ表征静电场(见电位)。电位与电场强度的关系是
  式中Q点为电位参考点,可选在无穷远处;P点为观察点。上式的微分形式为电场强度等于电位的负梯度,即
  E=-墷φ在ε为常数的区域,
  公式式中墷·墷可记作墷2,在直角坐标中
  公式公式分别为一阶与二阶微分算符。这样,可得电位φ所满足的静电场微分方程
  称为泊松方程。如果观察点处自由电荷密度ρ为0,则
  墷2φ=0
  称为拉普拉斯方程。泊松方程和拉普拉斯方程描述了静电场空间分布的规律性。可以证明,当已知ρ、ε及边界条件时,泊松方程或拉普拉斯方程的解是惟一的,可以设法求解电位φ,再求出场中各处的E。
实力技术
声明:你问我答网所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系fangmu6661024@163.com