欧拉公式的推导

2020-05-26 社会 280阅读

原发布者:XULIN徐林xulin

多面体欧拉定理:定理简单多面体的顶点数V、棱数E及面数F间有关系对于简单多面体,有著名的欧拉公式:V-E+F=2简单多面体即表面经过连续变形可以变为球面的多面体。欧拉定理:定理简单多面体的顶点数V、面数F及棱数E间有关系V+F-E=2;公式描述了简单多面体中顶点数、面数、棱数之间特有的规律。定理的证明:分析:以四面体ABCD为例。将它的一个面BCD去掉,再使它变为平面图形,四面体的顶点数V、棱数E与剩下的面数F1变形后都没有变(这里F1=F-1)。因此,要研究V、E和F的关系,只要去掉一个面,将它变形为平面图形即可。只需平面图形证明:V+F1-E=1;(1)去掉一条棱,就减少一个面,V+F1-E的值不变。例如去掉BC,就减少一个面ABC。同理,去掉棱CD、BD,也就各减少一个面ACD、ABD,由于V、F1-E的值都不变,因此V+F1-E的值不变;(2)再从剩下的树枝形中,去掉一条棱,就减少一个顶点,V+F1-E的值不变。例如去掉CA,就减少一个顶点C。同理去AD就减少一个顶点D,最后剩下AB。在以上变化过程中,V+F1-E的值不变,V+F1-E=2-0-1=1,所以V+F-E=V+F1-E+1=2。对任意的简单多面体,运用这样的方法,都是只剩下一条线段。公式对任意简单多面体都是正确的。欧拉定理又一证法:多面体,设顶点数V,面数F,棱数E。剪掉一个面,将其余的面拉平,使它变为平面图形,我们在两个图中求所有面的内角总和Σα。一方面,利用面求内角总和。设有F个面,各面的边数分别为n1,n2,…
声明:你问我答网所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系fangmu6661024@163.com