c(斜边)=√(a²+b²)。(a,b为两直角边)
解答过程如下:
(1)在直角三角形中满足勾股定理—在平面上的一个直角三角形中,两个直角边边长的平方加起来等于斜边长的平方。数学表达式:a²+b²=c²
(2)a²+b²=c²求c,因为c是一条边,所以就是求大于0的一个根。即c=√(a²+b²)。
在直角三角形中,如果有一个锐角等于30°,那么它所对的直角边等于斜边的一半。
在直角三角形中,如果有一条直角边等于斜边的一半,那么这条直角边所对的锐角等于30°。
扩展资料:
使用毕达哥拉斯定理的平方根函数计算斜边的长度。三角形的两条短边(彼此垂直的边)的长度为a和b,斜边的长度使用常见符号c表示,我们有。
因此这个长度也可以通过使用与斜边相对应的角度(为90°)并通过余弦定律得出:
许多计算机语言支持ISO C标准函数hypot(x,y)。 其计算结果可能更准确。
一些科学的计算器提供了从直角坐标转换为极坐标的功能。 这给出了在给定x和y的同时,斜边的长度和斜边与基线(上面的c1)的角度。 返回的角度通常由atan2(y,x)给出。
关于斜边的几条定律:
(1)斜边一定是直角三角形的三条边中最长的;
(2)斜边所对应的那条高是直角三角形的三条边中最短的;
(3)在直角三角形中,两条直角边的平方和等于斜边的平方(也称勾股定理);
(4)若一个三角形的两条直角边的平方和等于斜边的平方,那么这个三角形一定是直角三角形(称勾股定理的逆定理)。
(5) 如果一个三角形是直角三角形,那么这个三角形 斜边上的中线等于斜边的一半(称直角三角形斜边中线定理)