四阶行列式的完全展开式共有多少项

2020-10-12 教育 2697阅读

四阶行列式的完全展开式共有24项!过程如下:

1、四阶行列式展开,共有4个不同的三阶行列式;

2、按【行列式展开定理】,4阶行列式展开成低一阶的三阶行列式时,有四个分行列式;继续【展开】下去,每个3阶行列式可以【展】成3个2阶行列式;每个2阶行列式可以【展】成2项.所以全部展开后共有 4!=24项——和定义描述的相同!
D4=a11A11+a12A12+a13A13+a14A14
=a11M11-a12M12+a13M13-a14M14

拓展资料:

1、按照一定的规则,由排成正方形的一组(n个)数(称为元素)之乘积形成的代数和,称为n阶行列式。

例如,四个数a、b、c、d所排成二阶行式记为

 ,它的展开式为ad-bc。

九个数a1,a2,a3;b1,b2,b3;c1,c2,c3排成的三阶行列式记为

 ,它的展开式为a1b2c3+a2b3c1+a3b1c2-a1b3c2-a2b1c3-a3b2c1。

2、行列式起源于线性方程组的求解,在数学各分支有广泛的应用。在代数上,行列式可用来简化某些表达式,例如表示含较少未知数的线性方程组的解等。

参考资料来源:百度百科:n阶行列式

声明:你问我答网所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系fangmu6661024@163.com