小数乘法计算法则的基础是整数乘法,整数乘法的列竖式计算对学生来说是有一定基础的,可是如何让学生理解“小数乘法的计算法则同整数乘法的计算法则相同”其实有一个很重要的环节:如何使学生从整数乘法列竖式计算过渡到小数乘法的列竖式,理解好计算的算理显得非常重要。
一、要帮助学生复习“乘数的变化引起积的变化的规律”,在教学中我首先给出几组口算题,引导学生发现规律,体验发现的乐趣。充分理解(1)一个乘数不变,另一个乘数扩大(缩小)多少倍,积就会扩大(缩小)相同的倍数;(2)一个乘数扩大(缩小)多少倍,另一个乘数也扩大(缩小)多少倍,积就会扩大或缩小它们倍数的乘积倍。引导学生直接运用这个规律口头计算出2.4×4,同时运用小数乘整数的意义进行验证,然后再计算出1.5×0.3感受规律的正确性。
二、规范竖式的书写格式。
有了前面对算理的理解,当遇到用竖式计算2.4×14时,学生不再感到困难,能算出正确的结果,但有的学生在列竖式时,把14与2.4的整数部分对齐了,多数学生写对了,可要他们说出为什么这么写,部分孩子还是不能理解,所以我抓住小数点为什么不对齐了引导学生思考,我们已经将2.4扩大10倍,计算的是24乘14了,所以根据整数乘法的计算方法计算,而不是小数乘法了,最后还得将积缩小10倍。也就是在积的末位数出一位,点上小数点。后来学生在计算象12.7×23、5.2×0.64等题时,都能正确列出竖式进行计算了
三、引导学生总结出小数乘法计算法则:“计算小数乘法,先按照整数乘法的法则算出积,再看乘数中一共有几位小数,就从积的右边起数出几位,点上小数点”。两个乘数一共有3位小数,那么积肯定是3位小数。
存在的问题是:有的同学认为:两位小数乘一位小数,如果积的末尾有0,那积就不是三位小数,如0.25×0.4的积本来是0.100,但因小数末尾的零可以省略,便得到积为0.1,于是就出现了两位小数乘一位小数,积不一定是三位小数的情况。
针对学生出现的不同意见,我先让学生充分发表自己的意见,然后提醒同学们在判断小数乘法的积是几位小数时,要根据小数乘法的计算法则,如计算0.25×0.4时,我们先用25×4=100,然后看乘数当中一共有3位小数,于是就从积的右边起数出3位点上小数点,而不是先去零后,再数位数。虽然为了书写简便,在不影响积的大小的情况下,我们根据小数的性质将小数部分末尾的0省略,但省略不等于没有。所以两位小数乘一位小数,积一定是三位小数