ab=ba,a的阶为m,b的阶为n,证明ab的阶为mn

2022-03-29 教育 77阅读


证:首先由AB=A+B得:

AB-A-B+E=E

则(A-E)(B-E)=E,

从而A-E可逆

再由(A-E)(B-E)=E=(B-E)(A-E),

知AB=BA

在线性代数和矩阵论中,有两个m×n阶矩阵A和B,如果这两个矩阵满足B=QAP(P是n×n阶可逆矩阵,Q是m×m阶可逆矩阵),那么这两个矩阵之间是等价关系。也就是说,存在可逆矩阵,A经过有限次的初等变换得到B。

扩展资料

性质

矩阵A和A等价(反身性);

矩阵A和B等价,那么B和A也等价(等价性);

矩阵A和B等价,矩阵B和C等价,那么A和C等价(传递性);

矩阵A和B等价,那么IAI=KIBI。(K为非零常数)

具有行等价关系的矩阵所对应的线性方程组有相同的解

对于相同大小的两个矩形矩阵,它们的等价性也可以通过以下条件来表征:

(1)矩阵可以通过基本行和列操作的而彼此变换。

(2)当且仅当它们具有相同的秩时,两个矩阵是等价的。




声明:你问我答网所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系fangmu6661024@163.com