为什么仅有α过程的放电不能形成自持放电

2020-04-19 家居 795阅读
汤逊理论只适用于pd值较小的范围,流注理论只适用于pd值较大的范围,两者的过渡值为pd≈26.66kPacm。
汤逊理论的基本观点是:电子的碰撞电离是气体放电时电流倍增的主要过程,而阴极表面的电子发射是维持放电的重要条件。
流注理论的基本观点:①以汤逊理论的碰撞电离为基础,强调空间电荷对电场的畸变作用,着重于用气体空间的光电离来解释气体放电通道的发展过程。②放电以起始到击穿并非碰撞电离连续量变的过程,当初始电子崩中离子数达到108以上时,要引起空间光电离这样一个质的变化,此时由光子造成的二次崩向主崩汇合而形成流注。③流注一旦形成,放电就转入自持。
汤逊理论
以电子碰撞电离为主,电子崩中电子数目小于10的8次方。电子碰撞电离放电机理认为,受外界因素的作用,在气体间隙中存在自由电子。这些自由电子在电场中被加速,并在运动过程中不断与气体原子或分子发生碰撞;当电子获得电场提供的足够动能时,就会使气体原子产生碰撞电离,形成新的自由电子和正离子。这些新产生的电子和原有电子又从电场中获得能量,并继续碰撞其它气体原子,又可能激发出新的自由电子。这样,自由电子数将会成指数倍地增长,形成电子雪崩。由于电子的质量比离子小得多,因此,电子移动的速度比离子快许多,形成的电子崩的头部不断向前扩展,最终形成自持性气体放电。油楔绝缘内部气隙或油中小气泡较易发生汤逊放电,表现为放电量小、放电次数多。汤逊放电对绝缘的劣化有一定作用,但不会造成突发性故障。
流注理论
应用流注理论描述放电过程见图流注理论描述的放电过程。在外施电场作用下,电子崩由阴极向阳极发展,由于气体原子(或分子)的激励、电离、复合等过程产生光电离,在电子崩附近由光电子引起新的子电子崩,电子崩接近阳极时,电离最强,光辐射也强。光电子产生的子电子崩汇集到由阳极生长的放电通道,并帮助它的发展,形成由阳极向阴极前进的流注(正流注),流注的速度比碰撞电离快。同时,光辐射是指向各个方向的,光电子产生的地点也是随机的,这说明放电通道可能是曲折进行的。正流注达到阴极时,正负电极之间形成一导电的通道,可以通过大的电流,使间隙击穿。如果所加电压超过临界击穿电压(过电压),电子崩电离加强,虽然电子崩还没有发展到阳极附近,但在间隙中部就可能产生许多光电子及子电子崩,它们汇集到主电子崩,加速放电的发展,增加放电通道的电导率,形成由阴极发展的流注(负流注)。瑞特和米克认为,当电子崩头部的电场比外加电压在间隙中形成的均匀电场更强时,电子崩附近电场严重畸变,电离剧烈,放电可以自行发展成流注,从而导致间隙击穿。根据这一基本思想,他们进行了理论推演。虽然他们计算电子崩头部电场的方法不尽相同,推导出不同的计算击穿电压的方程,但是计算得到的击穿电压很相近,与试验比较相符。
声明:你问我答网所有作品(图文、音视频)均由用户自行上传分享,仅供网友学习交流。若您的权利被侵害,请联系fangmu6661024@163.com